
Nanomachines are largely in the research-and-development phase,but some primitive molecular machines have been tested. An example is a sensor having a switch approximately 1.5 nanometers across, capable of counting specific molecules in a chemical sample. The first useful applications of nanomachines might be in medical technology. which could be used to identify and destroy cancer cells. Another potential application is the detection of toxic chemicals, and the measurement of their concentrations, in the environment. Rice University has demonstrated a single-molecule car developed by a chemical process and including buckyballs for wheels. It is actuated by controlling the environmental temperature and by positioning a scanning tunneling microscope tip.
Another definition is a robot that allows precision interactions with nanoscale objects, or can manipulate with nanoscale resolution. Such devices are more related to Microscopy or Scanning probe microscopy, instead of the description of nanorobots as molecular machine. Following the microscopy definition even a large apparatus such as an atomic force microscope can be considered a nanorobotic instrument when configured to perform nanomanipulation. For this perspective, macroscale robots or microrobots that can move with nanoscale precision can also be considered nanorobots.

According to Richard Feynman, it was his former graduate student and collaborator Albert Hibbs who originally suggested to him (circa 1959) the idea of a medical use for Feynman's theoretical micromachines (see nanotechnology). Hibbs suggested that certain repair machines might one day be reduced in size to the point that it would, in theory, be possible to (as Feynman put it) "swallow the doctor". The idea was incorporated into Feynman's 1959 essay There's Plenty of Room at the Bottom.
Since nanorobots would be microscopic in size, it would probably be necessary for very large numbers of them to work together to perform microscopic and macroscopic tasks. These nanorobot swarms, both those incapable of replication (as in utility fog) and those capable of unconstrained replication in the natural environment (as in grey goo and its less common variants), are found in many science fiction stories, such as the Borg nanoprobes in Star Trek and The Outer Limits episode The New Breed.
Some proponents of nanorobotics, in reaction to the grey goo scare scenarios that they earlier helped to propagate, hold the view that nanorobots capable of replication outside of a restricted factory environment do not form a necessary part of a purported productive nanotechnology, and that the process of self-replication, if it were ever to be developed, could be made inherently safe. They further assert that their current plans for developing and using molecular manufacturing do not in fact include free-foraging replicators.
The most detailed theoretical discussion of nanorobotics, including specific design issues such as sensing, power communication, navigation, manipulation, locomotion, and onboard computation, has been presented in the medical context of nanomedicine by Robert Freitas. Some of these discussions remain at the level of unbuildable generality and do not approach the level of detailed engineering.

Potential applications for nanorobotics in medicine include early diagnosis and targeted drug-delivery for cancer, biomedical instrumentation surgery,pharmacokinetics monitoring of diabetes, and health care.
In such plans, future medical nanotechnology is expected to employ nanorobots injected into the patient to perform work at a cellular level. Such nanorobots intended for use in medicine should be non-replicating, as replication would needlessly increase device complexity, reduce reliability, and interfere with the medical mission.
Nanotechnology provides a wide range of new technologies for developing customized solutions that optimize the delivery of pharmaceutical products. Today, harmful side effects of treatments such as chemotherapy are commonly a result of drug delivery methods that don't pinpoint their intended target cells accurately. Researchers at Harvard and MIT, however, have been able to attach special RNA strands, measuring nearly 10 nm in diameter, to nano-particles, filling them with a chemotherapy drug. These RNA strands are attracted to cancer cells. When the nanoparticle encounters a cancer cell, it adheres to it, and releases the drug into the cancer cell.This directed method of drug delivery has great potential for treating cancer patients while avoiding negative effects (commonly associated with improper drug delivery).

No comments:
Post a Comment